1) Find the derivative and simplify. (remember you can simplify f before differentiation if it helps)
a) $f(x)=\frac{2 x^{3}}{5} \cos x=\frac{2}{5} x^{3} \cos x$
$f^{\prime}(x)=\int \frac{2}{5} \frac{d}{d x}\left(x^{3} \cos x\right)$ factor out constant
$=\frac{2}{5}\left[\frac{d}{d x}\left(x^{3}\right) \cos x+x^{3} \frac{1}{d x}(\cos x)\right]$ product
$l=\frac{2}{5}\left(3 x^{2} \cos x-x^{3} \sin x\right)$

$$
=\frac{6}{5} x^{2} \cos x-\frac{2}{5} x^{3} \sin x
$$

Not required to show all these steps, but it can be helpful while learning
(3 points each)

$$
\begin{aligned}
& \text { p) } \left.\begin{array}{l}
f(x)=\frac{\tan x \cos x}{2 x^{2}+1}=\frac{\operatorname{sinx} x}{\frac{\cos k}{\cos x} x} \\
2 x^{2}+1 \\
f(x)=\sin \text { spicy } \\
\text { first }
\end{array}\right) \\
& f(x)=\frac{\sin x}{2 x^{2}+1} \\
& f^{\prime}(x)=\frac{\left(2 x^{2}+1\right) \frac{d}{d x}(\sin x)-\sin x \frac{d}{4}\left(2 x^{2}+1\right)}{\left(2 x^{2}+1\right)^{2}} \\
& f^{\prime}(x)=\frac{\left(2 x^{2}+1\right) \cos x-\sin x(4 x)}{\left(2 x^{2}+1\right)^{2}} \\
& =\frac{2 x^{2} \cos x+\cos x-4 x \sin x}{\left(2 x^{2}+1\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
\text { c) } g(t)=\sqrt{9-t^{2}} & =\left(9-t^{2}\right)^{1 / 2} \\
g^{\prime}(t) & =\frac{1}{2}\left(9-t^{2}\right)^{-1 / 2} \frac{d}{d t}\left(9-t^{2}\right) \\
& =\frac{1}{2} \frac{1}{\sqrt{9-t^{2}}}(-2 t) \\
g^{\prime}(t) & =\frac{-t}{\sqrt{9-t^{2}}}
\end{aligned}
$$

Make sure to

- label denvativis
- simplify
- no complex frictions
- no negative exponents
- Combine fractions
2). Find the derivative: $f(x)=\frac{3 x^{2}}{\sqrt[3]{2 x+5}}=3 x^{2}(2 x+5)^{-2 / 3}$
prodrect
(or use quotient nus)

$$
\begin{aligned}
f^{\prime}(x) & =\frac{d}{d x}\left(3 x^{2}\right)(2 x+5)^{-1 / 3}+3 x^{2} \frac{1}{d x}(2 x+5)^{-1 / 3} \\
& =6 x(2 x+5)^{1 / 3}+3 x^{2} \cdot \frac{-1}{3}(2 x+5)^{-4 / 2} \frac{d}{d x}(2 x+5) \\
& =6 x(2 x+5)^{-1 / 3}-2 x^{2}(2 x+5)^{-4 / 3} \\
& =(2 x+5)^{-4 / 3}\left(6 x(2 x+5)-2 x^{2}\right) \\
& =\frac{12 x^{2}+30 x-2 x^{2}}{(2 x+5)^{4 / 3}}=\frac{10 x^{2}+30 x}{(2 x+5)^{4 / 3}}
\end{aligned}
$$

This was the example on video 3 of $2-3$
3) Find the equation of the tangent line (s) to $f(x)=x^{3}$ that contains the point $(2,0)$. Attach a computer generated graph which clearly validates your results.
Point of tangency $(a, f(a))=\left(a, a^{3}\right)$ slope $=f^{\prime}(a)=3 a^{2}$
lune: $y-a^{3}=3 a^{2}(x-a)$
$(2,0)$ is a point on the line \Rightarrow

$$
\begin{aligned}
& 0-a^{3}=3 a^{2}(2-a) \\
& -a^{3}=6 a^{2}-3 a^{3} \\
& 2 a^{3}-6 a^{2}=0 \\
& 2 a^{2}(a-3)=0
\end{aligned}
$$

Tangent ines:

$$
a=c, a=3
$$

$$
\text { at }(0,0)
$$

$$
y=0
$$

